UPDATED. 2022-01-25 11:20 (화)
KAIST 이상완 교수팀, 인공지능의 난제 열쇠 찾아내
KAIST 이상완 교수팀, 인공지능의 난제 열쇠 찾아내
  • 이진수 기자
  • 승인 2022.01.05 13:28
  • 댓글 0
이 기사를 공유합니다

[더리포트=이진수기자] KAIST(총장 이광형)는 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제 해결의 원리를 풀어내는 데 성공했다.

이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 KAIST 정재승 교수가 참여한 이번 연구는 ‘강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법’이다. 국제 학술지 셀(Cell)의 오픈 액세스 저널인 ‘셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. 

5일 KAIST에 따르면 최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 ​유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성(underfitting-overfitting risk) 또는 편향-분산 상충 문제​(bias-variance tradeoff)라​ 한다. 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없​다.​

반면 인간은 ​현재 주어진 ​문제​에 집중하면서도(과소적합 문제 해결), ​당면 문제에 과하게 집착하지 않고​(과적합 문제 해결)​ 변하는 상황에​ 맞게 유동적으로 대처​한다. 

연구팀은 ​뇌 데이터, 확률과정 추론 모형, 강화학습​ 알고리즘을​ 이용해 인간의 뇌가 이 문제를 ​어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.

놀랍게도 인간의 뇌는 ​중뇌 도파민 회로와 전두엽에서 처리​되는 ​‘예측 오차’의 하한선(prediction error lower bound) 이라는 단​ 한 가지 정보를 이용해 ​이 문제를 해결한다. ​

즉 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: 이렇게 풀면 90점까지는 받을 수 있어), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: 이렇게 풀면 기껏해야 70점이니 다르게 풀어보자)을 통해 과소적합-과적합의 위험을 최소화하게 ​된다​.​

이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했다(뉴런(Neuron) 학술지에 발표).

또 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(PLOS Biology 학술지에 발표). 

이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(네이처 커뮤니케이션즈(Nature Communications) 학술지에 발표).

이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 ‘전두엽 메타 학습 이론’을 정립한 바 있다(사이언스 로보틱스(Science Robotics) 학술지에 발표). 

이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.

연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 

이에 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.

연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다"며 "인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ고 말했다.  

아울러 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 밝혔다. 

이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.

 

 

 


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.